"The Perceived Effects of Precursor Laws on Domestic Methamphetamine Production"

by

Dr. Gregg W. Etter Sr., Ed.D. and Clarinda M. Garrett, M.S.

Abstract

Methamphetamine is a growing problem in the United States. Methamphetamine is produced both domestically and from foreign sources. In an effort to combat domestic production of methamphetamine, many states have passed laws restricting the purchase of precursors, which are used in the manufacturing process of this drug. This descriptive study examines the perceived effects of precursor laws on domestic methamphetamine production. Attorney General's offices in all fifty states were surveyed and the various state precursor laws were compared with DEA data on domestic methamphetamine lab seizures from 1999-2007 to determine the perceived effects of precursor laws.

Introduction

One of the primary crimes that gangs use to make money is the sale of drugs (Etter, 1998). Many gangs have found that the manufacture of methamphetamine is a profitable way to make money for gang operations in the United States. Many biker gangs and white supremacist groups have used the manufacture and sale of methamphetamine as a fund raiser for their illegal operations (Valdez, 2001).

Methamphetamine has become a popular drug of abuse and is easily manufactured from precursors that can be obtained from local stores. Meth labs began to spring up all over the United States, especially in the West, Mid-West and South (Hanwell, 2007; Feucht & Kyle, 1996). The meth labs cause chemical, HAZMAT and explosion hazards for law enforcement officers that try to enforce the drug laws (Hargraves, 2000). In an effort to reduce the production of
methamphetamine, many states began to pass precursor laws controlling the sale of chemicals that could be used to make methamphetamine. In this study we will examine the perceived effects of these precursor laws on domestic production of methamphetamine in the United States.

What is Methamphetamine?

Methamphetamine is a synthetic, man-made stimulant that affects the central nervous system of the human body. Methamphetamine can be inhaled, ingested, injected, or smoked to obtain the high. Surprisingly, it was not always an illegal drug. During the 1960’s, methamphetamine was widely distributed as a pharmaceutical, much like aspirin or cough drops. It was not until the late 1970’s that the Food and Drug Administration realized that methamphetamine was very addictive and had severe effects on the human body. Consequently, it was labeled as a Schedule II substance of the Controlled Substances Act and banned from the American market. It wasn’t until the late 1980’s that methamphetamine made a dramatic return. The abuse of methamphetamine continues to rapidly increase despite the actions of law enforcement. In fact, according to the DEA (2006), methamphetamine ranks as the second (next to alcohol and marijuana) most abused drug in the West and Midwest. Environmentally, domestic methamphetamine labs produce five or six pounds of waste for every one pound of methamphetamine that is created. According to the United States Forest Service (DEA, 2006), thousands of trees, forest life, and livestock have been killed as a result of waste from domestic methamphetamine labs.

What are the effects of Methamphetamine?

Methamphetamine has severe long-term and short-term effects. According to the DEA (2006) short-term effects on the human body include a decrease in appetite and an increase in alertness, wakefulness, and physical activity. When methamphetamine enters the body, large levels of dopamine neurotransmitters are released within the brain, creating a brief “rush.” This rapid release of large levels of dopamine can have toxic effects on the individual. It can cause an elevation of body temperature, which in turn, can cause seizures that ultimately result in death. Long-term results can cause mental and physical damage to the body. Physically, addicts tend to develop “meth mouth,” which is the effect of chemicals in methamphetamine on the teeth and mouth. Addict’s teeth tend to rot out and ulcers develop inside the mouth. Addicts also develop a condition called “formication,” (DEA, 2006) in which the addict has the sensation of bugs on the skin. As a result, the addict continually scratches and digs at their skin, which causes sores and severe wounds to develop. Mentally, addicts become paranoid and can develop delusions and auditory hallucinations. Addicts may also experience anxiety, fatigue, insomnia, and severe mood disturbances, which can cause the addict to react violently and/or become aggressive. In addition, the effects of methamphetamine usage have contributed to
criminal behavior among users. Large numbers of arrestees have been found to have tested positive for methamphetamine usage upon incarceration (Feucht & Kyle, 1996). It is estimated that meth usage costs the U.S. over $23 billion per year in lost lives, productivity, medical, law enforcement and other expenses (Dunham, 2009).

How is methamphetamine produced?
Methamphetamine was first made by the Japanese in the 1890’s (Nagi, 1893). It is a compound that is achieved by the chemical reduction of ephedrine. This was first accomplished by the use of red phosphorus and iodine in the reduction process. Methamphetamine is produced using common household chemicals and over the counter medications that contain ephedrine or pseudoephedrine. These over the counter medications are commonly called precursors. Methamphetamine is a Schedule II drug. Ailghis, Heedes and Ferner (1997) observed that:

“Methamphetamine is prepared by catalytic hydrogenation of ephedrine or pseudoephedrine and subsequently converted to hydrochloride (Remington’s, 1985). It can also be prepared by reducing the condensation product of benzylmethyl ketone and methylamine (Budavari, 1996)”.

Methamphetamine is produced in illegal clandestine drug labs that are commonly found in: motels, rural areas away from the general public, residential areas including houses, apartments, and garages. Mobile labs have also been found in vehicles and discarded along roadsides (Scott & Dedel, 2006). According to the Drug Enforcement Administration (2009) indications of the presence of a clandestine methamphetamine laboratory can include:
“A large amount of cold tablet containers that list Ephedrine or Pseudoephedrine as ingredients.

Jars containing clear liquid with a white or red colored solid on the bottom.
Jars labeled as containing Iodine or dark shiny metallic purple crystals inside of jars.

Jars labeled as containing Red Phosphorus or a fine dark red or purple powder.
Coffee filters containing a white pasty substance, dark red sludge, or small amounts of shiny white crystals.

Bottles labeled as containing Sulfuric, Muriatic or Hydrochloric Acid.
Bottles or jars with rubber tubing attached.
Glass cookware or frying pans containing a powdery residue.
An unusually large number of cans of Camp Fuel, paint thinner, acetone, starter fluid, Lye, and drain cleaners containing Sulfuric Acid or bottles containing Muriatic Acid.

Large amounts of lithium batteries, especially ones that have been stripped.
Soft silver or gray metallic ribbon (in chunk form) stored in oil or Kerosene.
Propane tanks with fittings that have turned blue.
Occupants of residence going outside to smoke.
Strong smell of urine, or unusual chemical smells like ether, ammonia or acetone.”

Clandestine methamphetamine laboratories use one of four basic production methods to manufacture the drug. According to the National Drug Intelligence Center (2001), the four most common methods of methamphetamine production in the United States are:

“Cold Cook Method: Ephedrine, iodine, and red phosphorus are mixed in a plastic container, and methamphetamine oil precipitates into another plastic container through a connecting tube. The oil is heated, typically by sunlight or by burying the containers in hot sand, to produce small quantities of highly pure d-methamphetamine.

Nazi Method: Primary chemicals are sodium or lithium metal and ephedrine. This method usually yields up to ounce quantities of highly pure d-methamphetamine and is frequently used by independent Caucasian methamphetamine cooks.

Red phosphorus Method: Also known as the “Mexican” or “ephedrine reduction” method. Primary chemicals are ephedrine or pseudoephedrine, hydriodic acid, and red phosphorus. Frequently used by Mexican organizations, or cooks trained by Mexicans, this method produces large amounts of d-methamphetamine.

P2P Method: Primary chemicals are phenyl-2-propanone and aluminum. Synthesis process is complicated and is normally used by outlaw motorcycle gangs to produce low-purity dl-methamphetamine.”
What are the Hazards of Methamphetamine to Law Enforcement and the Public?

Aside from the human cost of methamphetamine addiction, which is considerable, there are the hazards to law enforcement and the general public. McCampbell (2006) observed that clandestine methamphetamine labs posed hazards to law enforcement and first responder personnel due to the chemicals involved in the manufacturing process. He also noted that arrestees from a meth lab should be decontaminated before being assigned to a housing unit at the jail. Hanwell (2007) cited the risks of fire and explosion that were present in clandestine methamphetamine laboratories and noted that law enforcement personnel who were executing a search warrant should take extra precautions because of the HAZMAT nature of the intended target of the raid. Plunkett (1999) advised law enforcement officers conducting a search warrant not open containers without either knowing what was in them or having protective breathing equipment on because of the potential hazards from chemical fumes. Hargraves (2000) called the clandestine methamphetamine labs potential “chemical time bombs” and urged special caution in approaching one or in raiding such a lab. He cited cases of officers that were injured by fumes from the labs, explosion hazards, and hazards caused by suspects within the labs that were under the influence of the drug. Clean up and other environmental issues pose problems because of the serious threat to the environment and to the public because of the chemicals that are used in the manufacturing process of methamphetamine. Hargraves (2000) found that each pound of meth that was manufactured in a clandestine lab could produce up to 5 pounds of toxic waste (p. 4). Clandestine lab operators often bury toxic waste on-site, burn toxic waste on-site or dump toxic waste from the clandestine labs into rivers, streams and onto the roadways (Scott & Dedel, 2006). Sevick (1993) observed that the clandestine laboratory operators almost always used rental property and were ready to move out at a moment’s notice (p. 32). He cited poor lab ventilation as a potential major explosion hazard in dealing with clandestine laboratories.

In their study of clandestine methamphetamine labs, Scott and Dedel (2006) warned that:

“Many lab cooks do not take basic lab safety precautions. Using heat to process chemicals poses a higher risk of explosion, although indirect heat in the processing area—such as from smoking, electrical switches or even equipment-generated friction-can also trigger explosions. In addition police forced entry into labs can cause explosions—some accidental and some triggered by booby-traps set by lab operators.”

Local, state, and federal law enforcement have initiated action against methamphetamine by creating special task forces that specifically focus on methamphetamine production and its recreational use. Law enforcement officers and first responders have had to undergo extensive training in the handling of clandestine methamphetamine laboratory sites. In an effort to control this problem, over 90% of the states have created special “precursor” laws to control the production of
methamphetamine use by limiting the sales of chemical precursors, such as ephedrine and pseudoephedrine (NDCS, 2007; Sevick, 1993)).

Are these laws effective in the suppression of domestic methamphetamine production? The current authors will research the effect of these precursor laws on domestic methamphetamine production and determine whether they have had a positive, negative, or no effect on domestic methamphetamine lab seizures.

What are the observed trends in methamphetamine production?

According to the National Drug Control Strategy that was released in February 2007, researchers noted that the usage of methamphetamine had dropped dramatically among both adults and youth. Users that reported using methamphetamine over a lifetime dropped 41.4%, compared to users that had abused methamphetamine within the past year, which dropped 41.2% (p. 4). The National Drug Control Strategy also found that since its rise between 2001 and 2004, methamphetamine lab seizures and domestic methamphetamine production decreased steadily. Nationally, researchers found that methamphetamine usage was regionally concentrated within the Midwest and Western states. Furthermore, it was found that the passage of precursor laws in more than 40 states contributed to the deduction of lab seizures by 29% (p. 30). On September 30, 2006, the Combat Methamphetamine Epidemic Act was passed which further enhanced precursor laws and enacted stricter penalties for those who possessed precursor chemicals. Currently, data suggests that a majority of the methamphetamine that is used in the United States is either imported illegally or produced domestically. As a result, the United States is working with Canada and Mexico on eliminating drug smuggling by enacting tighter import controls. The U.S. has talked with China, Germany, and India, the three largest exporters of methamphetamine precursors, and put in a request to ensure cooperation against chemical diversion. The United States government remains hopeful that all of these efforts to restrict and limit the availability of methamphetamine will cause a dramatic decrease in usage in years to come.

According to the National Methamphetamine Threat Assessment 2008, domestic production rates of methamphetamine have decreased. In contrast, the treatment for the usage of methamphetamine has doubled since the year 2000, despite the records that indicate methamphetamine usage is stable. This is partly due to an increase in Mexican drug traffic organizations (DTOs), which produce the methamphetamine in Mexico and then smuggle it into the United States for distribution. These Mexican DTOs continue to dominate the American drug market. However, in recent months, the methamphetamine production rates have steadily increased in Canada. According to the National Methamphetamine Threat Assessment 2008, methamphetamine producers in Canada obtain precursor chemicals from chemical dealers in China and India. The methamphetamine is then produced in
Canada and shipped to the United States for distribution. Efforts by federal and local law enforcement officials are appearing to have an impact on the domestic production of methamphetamine. However, meth users are repeatedly engaging in multiple illegal activities, such as identity theft and fraud, to fund precursor chemicals for methamphetamine production. These incidents have occurred primarily in the southwest and western states. Mexican government officials have stepped up efforts to combat methamphetamine production. According to the United Nations Commodity Trade Statistics Database, 43.4 metric tons of pseudoephedrine was imported into Mexico in 2006, which is a significant decrease from 226.5 metric tons that was recorded in 2004 (as cited in National Methamphetamine Threat Assessment, 2008, p. 2). Furthermore, the Mexican government seized over 1,900 kilograms of methamphetamine along the southwest border in 2007 (as cited in National Methamphetamine Threat Assessment, 2008, p. 3). Despite these efforts, Mexican DTOs continue to smuggle methamphetamine and precursors into the United States using alternative trade routes, importing nonchemical derivatives, and the use of gangs such as motorcycle outlaw gangs, Hispanic gangs, and African-American gangs. The gangs are used by Mexican DTOs as a means of controlling the distribution at the retail level. Overall, the threat of domestic methamphetamine is stable but continues to decrease because of strict law enforcement efforts on enforcement of state precursor laws. However, there is no data that suggests that precursor laws have any effect on the usage of methamphetamine.

Vander Waal et al. (2007) conducted a study that examined the effect of precursor laws on domestic methamphetamine production in five states. The authors conducted interviews with law enforcement personnel, state policy makers, and local independent pharmacy owners (all of whom the authors labeled as key informants) about the enforcement and implementation of precursor laws. Five states were selected based on certain criteria. This included the presence of a precursor law and the number of small toxic labs (STL) that were seized by law enforcement. The five states that were selected were Oregon, Missouri, Indiana, Kentucky, and Oklahoma. After interviews were conducted with key informants, each interview was transcribed and coded to identify key themes and keywords. Their findings found that legislators, law enforcement personnel, and pharmacists in all five states agreed that the presence of STLs in the state continues to be a huge problem for law enforcement and for the health of the citizens. All legislators, law enforcement personnel, and pharmacists perceived that the precursor laws are having a positive effect on the decrease of STLs. Vander Waal et al. (2007) found that in states such as Oregon and Oklahoma, the reduction in STL seizures was immediate after the passage of the precursor law and, in effect, caused a dramatic decrease of STL seizures. The researchers assumed that this change is the result of tracking and monitoring of precursor chemicals as well as the actual precursor law. In comparison to Oregon and Oklahoma, Kentucky and Indiana, whom do not have a tracking or monitoring
system, did not experience immediate decreases in STL seizures. The effectiveness of the precursor laws was the limitation of the availability of the precursor chemicals. However, Vander Waal et al. (2007) did make note that several improvements could be made in order to further decrease production. For instance, one suggestion was that there should be an electronic, state-wide database for those purchasing precursor chemicals. This would encourage better information sharing between law enforcement personnel and pharmacies. Another suggestion was that states should work with neighboring states to eliminate smurfing (repeatedly buying the maximum amount of precursor chemicals at different locations) by enacting stricter provisions in purchasing precursors. A fourth suggestion was that law enforcement should work with federal law enforcement to reduce the importation of methamphetamine. Although the study gave encouraging results in the reduction of domestic methamphetamine, only five states participated in the study. Thus, there was a severe limitation on the actual effect of precursor laws on methamphetamine production. Consequently, the current authors sought to expand Vander Waal et al. research by examining the effects of precursor laws on domestic methamphetamine production in all fifty states.

Methodology
In order to measure the perceived effects of methamphetamine precursor laws in the United States, Attorney General’s Offices were contacted in all 50 states. Some Attorney General’s referred the researchers to state law enforcement agencies that specifically prosecuted drugs or dealt with methamphetamine. The research questions were asked in a telephone survey except where the specific agency asked for the questions to be sent by FAX or e-mail. This data was compared with data provided by the Drug Enforcement Administration on Methamphetamine Clandestine Laboratory seizures in all 50 states for the period of 1999-2007.

Research Questions
The research questions included:
- Does your state have a specific methamphetamine precursor law?
- Do you perceive methamphetamine as being a problem in your state?
- Do you feel the methamphetamine precursor laws have had a positive, negative or no effect on the suppression of methamphetamine production in your state?
- Is most of the methamphetamine that you are seeing in your state come from foreign or domestic sources?
- Is this a change from 10 years ago?

Findings-Research Question 1:
Does your state have a specific methamphetamine precursor law?

*** 46 states (or 92%) stated that they had a specific law that affected the sale or
possession of methamphetamine precursors.

*** 4 states (or 8%) had no such state law on the statute books.

Figure No. 1 DEA Statistics on Domestic Methamphetamine Production (State by State):

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST Law?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK Yes</td>
<td>15</td>
<td>26</td>
<td>14</td>
<td>33</td>
<td>40</td>
<td>66</td>
<td>37</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>AL Yes</td>
<td>30</td>
<td>84</td>
<td>166</td>
<td>264</td>
<td>341</td>
<td>385</td>
<td>293</td>
<td>193</td>
<td>145</td>
</tr>
<tr>
<td>AR Yes</td>
<td>330</td>
<td>243</td>
<td>404</td>
<td>461</td>
<td>776</td>
<td>800</td>
<td>417</td>
<td>407</td>
<td>303</td>
</tr>
<tr>
<td>AZ Yes</td>
<td>380</td>
<td>384</td>
<td>312</td>
<td>253</td>
<td>140</td>
<td>122</td>
<td>75</td>
<td>41</td>
<td>15</td>
</tr>
<tr>
<td>CA Yes</td>
<td>2,579</td>
<td>2,198</td>
<td>1,883</td>
<td>1,743</td>
<td>1,287</td>
<td>764</td>
<td>470</td>
<td>353</td>
<td>286</td>
</tr>
<tr>
<td>CO Yes</td>
<td>104</td>
<td>142</td>
<td>240</td>
<td>450</td>
<td>352</td>
<td>228</td>
<td>151</td>
<td>96</td>
<td>46</td>
</tr>
<tr>
<td>CT No</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>DE Yes</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FL Yes</td>
<td>23</td>
<td>15</td>
<td>35</td>
<td>157</td>
<td>240</td>
<td>276</td>
<td>276</td>
<td>136</td>
<td>121</td>
</tr>
<tr>
<td>GA Yes</td>
<td>27</td>
<td>54</td>
<td>59</td>
<td>127</td>
<td>250</td>
<td>261</td>
<td>131</td>
<td>156</td>
<td>67</td>
</tr>
<tr>
<td>HI Yes</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>20</td>
<td>11</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>IA Yes</td>
<td>352</td>
<td>283</td>
<td>578</td>
<td>861</td>
<td>1,272</td>
<td>1,335</td>
<td>761</td>
<td>318</td>
<td>169</td>
</tr>
</tbody>
</table>

Figure No. 1 Continued:
The state by state statistics over the period of 1999-2007 (Figure 1) show that methamphetamine is a nationwide problem. However, that problem varies in intensity in various areas of the United States. This affects the perception of the problem as seen by law enforcement in the various states.

**Findings-Research Question 2:**

**Do you perceive methamphetamine as being a problem in your state?**

***** 43 states perceived methamphetamine as being a problem in their state.**

***** Of the 7 states that did not perceive methamphetamine as a problem, they cited other drugs such as heroin being the major issue in their area.**

| ID | IL | IN | KS | KY | LA | MA | MD | ME | MI | MN | MO | MS | MT | NC | ND | NE | NH | NJ | NM | NV | NY | OH | OK | OR | PA | RI | SC | SD | TN | TX | UT | VA | VT | WA | WI | WV | WY |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Yes | 124 | 151 | 211 | 67 | 8 | 0 | 1 | 0 | 10 | 100 | 439 | 57 | 26 | 6 | 13 | 17 | 0 | 2 | 47 | 47 | 290 | 1 | 14 | 2 | 1 | 1 | 143 | 177 | 241 | 8 | 0 | 599 | 5 | 5 | 18 |
| 127 | 363 | 641 | 104 | 15 | 0 | 2 | 2 | 21 | 123 | 889 | 126 | 28 | 14 | 34 | 36 | 2 | 3 | 50 | 399 | 283 | 8 | 2 | 1 | 5 | 1 | 429 | 420 | 209 | 3 | 1 | 548 | 45 | 17 | 12 |
| 319 | 521 | 852 | 175 | 16 | 1 | 2 | 0 | 122 | 154 | 2,180 | 224 | 89 | 47 | 85 | 208 | 2 | 1 | 103 | 351 | 259 | 8 | 26 | 1 | 10 | 1 | 619 | 612 | 121 | 5 | 1 | 209 | 3 | 30 | 61 |
| 552 | 723 | 768 | 373 | 16 | 1 | 2 | 0 | 225 | 250 | 2,767 | 462 | 73 | 47 | 207 | 357 | 2 | 1 | 121 | 587 | 105 | 8 | 26 | 3 | 26 | 1 | 608 | 780 | 85 | 1 | 162 | 1 | 36 | 61 |
| 751 | 979 | 641 | 373 | 94 | 11 | 3 | 3 | 267 | 309 | 2,885 | 319 | 73 | 168 | 252 | 253 | 1 | 2 | 195 | 525 | 131 | 18 | 48 | 1 | 18 | 1 | 953 | 1,068 | 72 | 5 | 121 | 1 | 65 | 12 |
| 1,058 | 1,074 | 584 | 485 | 123 | 168 | 3 | 2 | 295 | 168 | 2,788 | 267 | 65 | 318 | 234 | 205 | 2 | 2 | 120 | 419 | 79 | 48 | 20 | 2 | 3 | 1 | 1,327 | 2,885 | 159 | 5 | 187 | 2 | 62 | 106 |
| 931 | 981 | 375 | 571 | 98 | 88 | 3 | 5 | 256 | 88 | 2,176 | 187 | 26 | 322 | 159 | 230 | 2 | 2 | 120 | 472 | 35 | 48 | 20 | 3 | 2 | 1 | 873 | 659 | 37 | 5 | 189 | 2 | 30 | 106 |
| 778 | 737 | 165 | 574 | 93 | 33 | 4 | 0 | 256 | 256 | 1,288 | 145 | 26 | 322 | 159 | 230 | 2 | 2 | 159 | 472 | 35 | 38 | 13 | 3 | 2 | 1 | 401 | 222 | 37 | 5 | 55 | 2 | 62 | 106 |
| 359 | 795 | 97 | 343 | 22 | 33 | 4 | 0 | 172 | 88 | 1,266 | 157 | 7 | 322 | 189 | 253 | 2 | 2 | 59 | 472 | 33 | 38 | 13 | 3 | 2 | 1 | 547 | 179 | 18 | 5 | 55 | 2 | 62 | 106 |

© Copyrighted by the National Gang Crime Research Center
As shown in Figure 2, the number of methamphetamine incidents, as recorded by the Drug Enforcement Administration in the period from 1999-2007, shows that the overall number of methamphetamine incidents has been dropping.
Findings-Research Question#3:
Do you feel the methamphetamine precursor laws have had a positive, negative or no effect on the suppression of methamphetamine production in your state?

*** The overall opinion of those surveyed was that the precursors had a positive effect on suppressing domestic meth production (40 states/ 80%).
*** 6 states (12%) responded that the laws had no visible effect.
*** 4 states (8%) had no law.
*** There were no states that claimed a negative effect.

The perception by the various attorney generals that the precursor laws had a positive effect on domestic methamphetamine production seems to be supported by the drop in methamphetamine clandestine laboratory seizures recorded in Figure#2.

Findings-Research Question#4:
Is most of the methamphetamine that you are seeing in your state come from foreign or domestic sources?

*** The majority of the states (27) stated that foreign production of meth was the main source in their state.
*** Another 12 states stated that meth was coming in by domestic and foreign sources in their area.
*** Only 11 states replied that the majority of the meth in their state was from domestic sources.
The sources of the majority of the attorney generals (54%) stated that the methamphetamine found in their state came from foreign sources. When you combine this with the 24% that felt both domestic and foreign sources were involved you end up with a potential foreign involvement of 78% possibly being from foreign sources and only 22% being from domestic sources.

**Findings-Research Question#5:**

Is this a change from 10 years ago?

*** Respondents in 31 states felt that there had been a change in the sources of methamphetamine in their state over the last 10 years.

*** 31 respondents cited foreign production from Mexico, Canada, or Asia

The introduction of Mexican DTO’s as a major nationwide player in drug dealing, transporting, and manufacturing is fairly new in the United States. Previously, the Mexican DTO’s pretty much stayed on their side of the border and shipped their product through third parties, where it was sold by various American street gangs. However, using a business model in this new paradigm of drug wheeling and dealing, the Mexican DTO’s have expanded both horizontally and vertically to encompass all phases of the drug trafficking operation on the United States side of the border. This presents a series of new challenges for United States law enforcement.
change from 10 yrs ago pie chart here

graphic not printed: requires subscription

Limitations of the Study

*** Not all clandestine methamphetamine labs are discovered.
*** Of the clandestine methamphetamine labs discovered by law enforcement, not all are reported to the federal government.

Implications for Drug Enforcement and Policy

The availability of ephedra and other precursors in Mexico and other Central American countries has led to methamphetamine production in those countries (Weaver, 1997). The effectiveness of precursor laws has caused a decline in domestic production of methamphetamine. However, it has not caused a demand reduction for methamphetamine as evidenced by the almost doubled methamphetamine addiction rate over the last few years. The demand for methamphetamine has resulted in methamphetamine production being taken up by Mexican Drug Trafficking Organizations. This has resulted in a changed drug trafficking pattern in the United States. Rather than biker gangs and Neo-Nazis manufacturing and dealing in Meth, currently, there exists a situation where the Mexican DTO’s have crossed the border and are operating openly in the United States to deal the drug that they make. The Mexican DTO’s have forged alliances with Hispanic street gangs such as MS-13 and La-18 to sell methamphetamine. The drug trafficking routes have become the major interstate highway systems and are interlinked with the human trafficking problem in the United States. There is also some evidence of Neo-Nazis groups trying to ally themselves with Mexican DTO’s in Texas and Louisiana. This presents a new challenge for law enforcement as these groups traditionally usually did not get along. Contact between the groups seems to be made in the various Salsa style dance clubs in those areas.

Cultural and language barriers are major factors in the investigation and
interdiction of this new source of drugs into the United States. Another issue, that may prove to be the 800 pound gorilla in the room for many, is the issue of immigration and the illegal or undocumented workers present in large numbers within the United States. With estimates running as high as 20 million undocumented workers in the United States, the unwillingness of members of this community to speak to the police about anything is understandable. This is exploited by the Mexican DTO’s to ensure cooperation by otherwise law abiding workers. A lot can happen when no one will speak about it.

**Summary**

Methamphetamine is a problem in most states. The vast majority of the states have precursor laws. The precursor laws are suppressing domestic production of methamphetamine. Domestic production is being replaced by foreign production largely from Mexico and Asia (NDIC, 2006). This has resulted in Mexican DTO’s operating directly within the United States and alliances with American street gangs to transport or sell the foreign made methamphetamine. This represents a major change in how methamphetamine is acquired by users in the United States (DEA, 2007). Gangs are still making money selling methamphetamine, but it is a different group of gangs that are doing it. The authors would like to thank the Attorney General’s Offices and law enforcement agencies in all fifty states that participated in this survey and thus made this study possible.

**References**


About the Authors

Dr. Gregg W. Etter, Sr. Ed.D. is an Assistant Professor of Criminal Justice at the University of Central Missouri. He retired as a Lieutenant with the Sedgwick County Sheriff’s Office after serving from 1977 to 2006. He is rated as a gang expert by the National Gang Crime Research Center. He has written extensively and presented classes on gangs, white supremacist groups and police management topics in the United States and Canada. Dr. Etter earned his Bachelor’s and Master’s degrees from Wichita State University and his Doctorate degree from Oklahoma State University. He is a member of the American Society of Criminology, the Academy of Criminal Justice Sciences, and the National Sheriff’s Association.

Ms. Clarinda M. Garrett, M.S. is a graduate student at the University of Central Missouri. She recently completed her Master’s Degree in criminal justice. Currently, she is employed by the University Of Central Missouri Department of Public Safety.

Note: An earlier version of this presentation was made at the Annual Meeting of the Academy of Criminal Justice Sciences in Boston, MA in March, 2009. This research was funded in part by a UCM Professional Development Assistance Grant.